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Abstract. Data clustering is the process of identifying natural groupings or clusters within multidimensional data based on
some similarity measure. Clustering is a fundamental process in many different disciplines. Hence, researchers from different
fields are actively working on the clustering problem. This paper provides an overview of the different representative clustering
methods. In addition, several clustering validations indices are shown. Furthermore, approaches to automatically determine
the number of clusters are presented. Finally, application of different heuristic approaches to the clustering problem is also
investigated.
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1. Introduction

Data clustering is the process of identifying natural groupings or clusters within multidimensional
data based on some similarity measure (e.g. Euclidean distance) [51,52]. It is an important process
in pattern recognition and machine learning [47]. Furthermore, data clustering is a central process
in Artificial Intelligence (AI) [46]. Clustering algorithms are used in many applications, such as
image segmentation [22,50,100], vector and color image quantization [9,56,109], data mining [53],
compression [1], machine learning [17], etc. A cluster is usually identified by a cluster center (or
centroid) [64]. Data clustering is a difficult problem in unsupervised pattern recognition as the clusters
in data may have different shapes and sizes [51].

Several surveys and books on clustering have been published [11,31,51,52,56]. However, due to the
prohibitive amount of research conducted in the area of clustering and the number of new clustering
approaches proposed during the last few years, an up-to-date survey investigating thestate-of-the-art
clustering methods is needed. Hence, the purpose of this paper is to provide such an overview of
representative clustering methods. However, trying to address all the clustering methods on one paper
is not possible. Therefore, this paper tries to provide the reader with an easy-to-read and up-to-date
overview of a set of representative clustering methods. Furthermore, this paper tries to address the
clustering problems from different angles by presenting classical and new clustering methods, discussing
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the problem of finding the “optimal” number of clusters in a data set and providing an overview of using
stochastic approaches to solve clustering problems.

The reminder of this paper is organized as follows: Section 2 provides a background material. Section
3 surveys different clustering techniques. Several clustering validation techniques are presented in
Section 4. Methods for determining the number of clusters in a data set are given in Section 5. Section
6 provides a brief introduction to the use of Self-Organizing Maps for clustering. Clustering using
stochastic techniques is investigated in Section 7. Finally, Section 8 concludes the paper.

2. Backgrounds

This section defines the terms used throughout the paper and it provides the reader with the necessary
background material to follow-up the discussion in the paper.

2.1. Definitions

The following terms are used in this paper:

– A pattern (or feature vector), z, is a single object or data point used by the clustering algorithm [52].
– A feature (or attribute) is an individual component of a pattern [52].
– A cluster is a set of similar patterns, and patterns from different clusters are not similar [30].
– Hard (or Crisp) clustering algorithms assign each pattern to one and only one cluster.
– Fuzzy clustering algorithms assign each pattern to each cluster with some degree of membership.
– A distance measure is a metric used to evaluate the similarity of patterns [52].

The clustering problem can be formally defined as follows [104]:
Given a data setZ = {z1,z2, . . . ,zp, . . . ,zNp} wherezp is a pattern in theNd-dimensional feature

space, andNp is the number of patterns inZ, then the clustering ofZ is the partitioning ofZ into K
clusters{C1, C2, . . . , CK} satisfying the following conditions:

– Each pattern should be assigned to a cluster, i.e.

∪K
k=1Ck = Z

– Each cluster has at least one pattern assigned to it, i.e.

Ck �= φ,k = 1, . . . ,K

– Each pattern is assigned to one and only one cluster (in case of hard clustering only), i.e.

Ck ∩ Ckk = φ where k �= kk

2.2. Similarity measures

As previously mentioned, clustering is the process of identifying natural groupings or clusters within
multidimensional data based on some similarity measure. Hence, similarity measures are fundamental
components in most clustering algorithms [52].

The most popular way to evaluate a similarity measure is the use of distance measures. The most
widely used distance measure is the Euclidean distance defined as

d(zu,zw) =

√√√√ Nd∑
j=1

(zu,j − zw,j)
2 = ‖zu − zw‖ (1)



M.G.H. Omran et al. / Clustering methods 585

Euclidean distance is a special case (whenα = 2) of the Minkowski metric [52] defined as

dα(zu,zw) =


 Nd∑

j=1

(zu,j − zw,j)
α




1/α

= ‖zu − zw‖α (2)

Whenα = 1, the measure is referred to as the Manhattan distance [48].
Clustering data of high dimensionality using the Minkowski metric is usually not efficient because

the distance between the patterns increases with increase in dimensionality. Hence, the concepts of near
and far become weaker [48]. Furthermore, for the Minkowski metric, the largest-scaled feature tends to
dominate the other features. This can be solved by normalizing the features to a common range [52].
One way to do this is by using the cosine distance (or vector dot product) which is the sum of the product
of each component from two vectors defined as

< zu,zw > =

Nd∑
j=1

zu,jzw,j

‖zu‖ ‖zw‖ (3)

where< zu,zw >∈ [−1, 1].
The cosine distance is actually not a distance but rather a similarity metric. In other words, the cosine

distance measures the difference in the angle between two vectors not the difference in the magnitude
between two vectors. The cosine distance is suitable for clustering data of high dimensionality [48].

Another distance measure is the Mahalanobis distance defined as

dM (zu,zw) = (zu − zw)Σ−1(zu − zw)T (4)

whereΣ is the covariance matrix of the patterns. The Mahalanobis distance gives different features
different weights based on their variances and pairwise linear correlations. Thus, this metric implicitly
assumes that the densities of the classes are multivariate Gaussian [52].

There are other distance measures in the literature. Readers are referred to Everitt et al. [31] and
Fielding [32] for more details.

3. Clustering techniques

Most clustering algorithms are based on two popular techniques known ashierarchical andpartitional
clustering [36,65]. In the following, an overview of both techniques is presented with an elaborate
discussion of popular hierarchical and partitional clustering algorithms.

3.1. Hierarchical clustering techniques

Algorithms in this category generate a cluster tree (ordendrogram) by using heuristic splitting or
merging techniques [46]. A cluster tree is defined as “a tree showing a sequence of clustering with each
clustering being a partition of the data set” [65]. Algorithms that use splitting to generate the cluster
tree are calleddivisive. On the other hand, the more popular algorithms that use merging to generate the
cluster tree are calledagglomerative. Divisive hierarchical algorithms start with all the patterns assigned
to a single cluster. Then, splitting is applied to a cluster in each stage until each cluster consists of one
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pattern. Contrary to divisive hierarchical algorithms, agglomerative hierarchical algorithms start with
each pattern assigned to one cluster. Then, the two most similar clusters are merged together. This step
is repeated until all the patterns are assigned to a single cluster [100]. Several agglomerative hierarchical
algorithms were proposed in the literature which differ in the way that the two most similar clusters
are calculated. The two most popular agglomerative hierarchical algorithms are thesingle link [95] and
complete link [5] algorithms. Single link algorithms merge the clusters whose distance between their
closest patterns is the smallest. Complete link algorithms, on the other hand, merge the clusters whose
distance between their most distant patterns is the smallest [100]. In general, complete link algorithms
generate compact clusters while single link algorithms generate elongated clusters. Thus, complete link
algorithms are generally more useful than single link algorithms [52]. Another less popular agglomerative
hierarchical algorithm is thecentroid method [5]. The centroid algorithm merges the clusters whose
distance between their centroids is the smallest. One disadvantage of the centroid algorithm is that the
characteristic of a very small cluster is lost when merged with a very large cluster [100]. More details
about traditional hierarchical clustering techniques can be found in Everitt [30].

Recently, a hierarchical clustering approach to simulate the human visual system by modeling the
blurring effect of lateral retinal interconnections based on scale space theory has been proposed by
Leung et al. [65]. The following paragraph provides the reader with a good idea about this approach as
described by Leung et al. [65]:

“In this approach, a data set is considered as an image with each light point located at a datum
position. As we blur this image, smaller light blobs merge into larger ones until the whole image
becomes one light blob at a low level of resolution. By identifying each blob with a cluster, the
blurring process generates a family of clustering along the hierarchy.”

According to Leung et al. [65], this approach has several advantages, including:

– it is not sensitive to initialization,
– it is robust in the presence of noise in the data set, and
– it generates clustering that is similar to that perceived by human eyes.

In general, hierarchical clustering techniques have the following advantages [36]:

– the number of clusters need not to be specifieda priori, and
– they are independent of the initial conditions.

However, hierarchical clustering techniques generally suffer from the following drawbacks:

– They are computationally expensive (time complexity isO(N 2
p logNp) and space complexity is

O(N2
p ) [100]). Hence, they are not suitable for very large data sets.

– They are static, i.e. patterns assigned to a cluster cannot move to another cluster.
– They may fail to separate overlapping clusters due to a lack of information about the global shape

or size of the clusters.

3.2. Partitional clustering techniques

Partitional clustering algorithms divide the data set into a specified number of clusters. These al-
gorithms try to minimize certain criteria (e.g. a square error function) and can therefore be treated as
optimization problems. However, these optimization problems are generally NP-hard and combinatori-
al [65]. The advantages of hierarchical algorithms are the disadvantages of the partitional algorithms and
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vice versa. Because of their advantages, partitional clustering techniques are more popular than hierar-
chical techniques in pattern recognition [51], hence, this paper concentrates on partitional techniques.

Partitional clustering algorithms are generally iterative algorithms that converge to local optima [47].
Employing the general form of iterative clustering used by Hamerly and Elkan [47], the steps of an
iterative clustering algorithm are:

1. Randomly initialize theK cluster centroids
2. Repeat

– For each pattern,zp, in the data setdo
Compute its membershipu(mk|zp) to each centroidmk and its weightw(zp)

– Recalculate theK cluster centroids, using

mk =

∑
∀zp

u(mk|zp)w(zp)zp∑
∀zp

u(mk|zp)w(zp)
(5)

until a stopping criterion is satisfied.

In the above algorithm,u(mk|zp) is the membership function which quantifies the membership of
patternzp to clusterk. The membership function,u(mk|zp), must satisfy the following constraints:

– u(mk|zp) � 0, p = 1,. . . , Np andk = 1, . . .,K

–
K∑

k=1

u(mk|zp) = 1, p = 1, . . ., Np

Crisp clustering algorithms use ahard membership function (i.e.u(mk|zp) ∈{0,1}), while fuzzy
clustering algorithms use asoft member function (i.e.u(mk|zp) ∈[0,1]) [47].

The weight function,w(zp), in Eq. (5) defines how much influence patternz p has in recomputing the
centroids in the next iteration, wherew(zp) > 0 [47]. The weight function was proposed by Zhang [111].

Different stopping criteria can be used in an iterative clustering algorithm, for example:

– stop when the change in centroid values are smaller than a user-specified value,
– stop when the quantization error is small enough, or
– stop when a maximum number of iterations has been exceeded.

In the following, popular iterative clustering algorithms are described by defining the membership and
weight functions in Eq. (5).

3.2.1. The K-means algorithm
The most widely used partitional algorithm is the iterative K-means approach [34]. The objective

function that the K-means optimizes is

JK−means =
K∑

k=1

∑
∀zp∈Ck

d2(zp,mk) (6)

Hence, the K-means algorithm minimizes the intra-cluster distance [47]. The K-means algorithm
starts withK centroids (initial values for the centroids are randomly selected or derived froma priori
information). Then, each pattern in the data set is assigned to the closest cluster (i.e. closest centroid).
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Finally, the centroids are recalculated according to the associated patterns. This process is repeated until
convergence is achieved.

The membership and weight functions for K-means are defined as

u(mk|zp) =
{

1 if d2(zp,mk) = argmink

{
d2(zp,mk)

}
0 otherwise (7)

w(zp) = 1 (8)

Hence, K-means has a hard membership function. Furthermore, K-means has a constant weight
function, thus, all patterns have equal importance [47].

The K-means algorithm has the following main advantages [100]:

– it is very easy to implement, and
– its time complexity is O(Np) making it suitable for very large data sets.

However, the K-means algorithm has the following drawbacks [25]:

– the algorithm is data-dependent,
– it is a greedy algorithm that depends on the initial conditions, which may cause the algorithm to

converge to suboptimal solutions, and
– the user needs to specify the number of clusters in advance.

The K-medoids algorithm is similar to K-means with one major difference, namely, the centroids are
taken from the data itself [46]. The objective of K-medoids is to find the most centrally located patterns
within the clusters [42]. These patterns are calledmedoids. Finding a single medoid requiresO(N 2

p ).
Hence, K-medoids is not suitable for moderately large data sets.

3.2.2. The Fuzzy C-means algorithm
A fuzzy version of K-means, called Fuzzy C-means (FCM) (sometimes called fuzzy K-means), was

proposed by Bezdek [12,13]. FCM is based on a fuzzy extension of the least-square error criterion. The
advantage of FCM over K-means is that FCM assigns each pattern to each cluster with some degree
of membership (i.e. fuzzy clustering). This is more suitable for real applications where there are some
overlaps between the clusters in the data set. The objective function that the FCM optimizes is

JFCM =
K∑

k=1

Np∑
p=1

uq
k,pd

2(zp,mk) (9)

whereq is the fuzziness exponent, withq � 1. Increasing the value ofq will make the algorithm
more fuzzy;uk,p is the membership value for thepth pattern in thekth cluster satisfying the following
constraints:

– uk,p � 0, p = 1,. . . , Np andk = 1,. . . , K

–
K∑

k=1

uk,p = 1, p = 1,. . . , Np

The membership and weight functions for FCM are defined as [47]

u(mk|zp) =
‖zp − mk‖−2/(q−1)

K∑
k=1

‖zp − mk‖−2/(q−1)

(10)
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w(zp) = 1 (11)

Hence, FCM has a soft membership function and a constant weight function. In general, FCM performs
better than K-means [46] and it is less affected by the presence of uncertainty in the data [66]. However,
as in K-means it requires the user to specify the number of clusters in the data set. In addition, it may
converge to local optima [52].

Krishnapuram and Keller [60,61] proposed a possibilistic clustering algorithm, calledpossibilistic
C-means. Possibilistic clustering is similar to fuzzy clustering; the main difference is that in possibilistic
clustering the membership values may not sum to one [100]. Possibilistic C-means works well in the
presence of noise in the data set. However, it has several drawbacks, namely [100],

– it is likely to generate coincident clusters,
– it requires the user to specify the number of clusters in advance,
– it converges to local optima, and
– it depends on initial conditions.

A thorough survey on fuzzy clustering approaches can be found in Baraldi and Blonda [11].

3.2.3. The Gaussian Expectation-Maximization algorithm
Another popular clustering algorithm is the Expectation-Maximization (EM) algorithm [15,72,90].

EM is used for parameter estimation in the presence of some unknown data [46]. EM partitions the data
set into clusters by determining a mixture of Gaussians fitting the data set. Each Gaussian has a mean
and covariance matrix [3]. The objective function that the EM optimizes as defined by Hamerly and
Elkan [47] is

JEM = −
Np∑
p=1

log

(
K∑

k=1

p(zp|mk)p(mk)

)
(12)

wherep(zp|mk) is the probability ofzp given that it is generated by a Gaussian distribution with centroid
mk, andp(mk) is the prior probability of centroidmk.

The membership and weight functions for EM are defined as [47]

u(mk|zp) =
p(zp|mk)p(mk)

p(zp)
(13)

w(zp) = 1 (14)

Hence, EM has a soft membership function and a constant weight function. The algorithm starts with
an initial estimate of the parameters. Then, anexpectation step is applied where the known data values are
used to compute the expected values of the unknown data [46]. This is followed by amaximization step
where the known and expected values of the data are used to generate a new estimate of the parameters.
The expectation and maximization steps are repeated until convergence.

Results from Veenman et al. [103] and Hamerly [46] showed that K-means performs comparably to
EM. Furthermore, Aldrin et al. [3] stated that EM fails on high-dimensional data sets due to numerical
precision problems. They also observed that Gaussians often collapsed to delta functions [3]. In addition,
EM depends on the initial estimate of the parameters [46,100] and it requires the user to specify the
number of clusters in advance. Moreover, EM assumes that the density of each cluster is Gaussian which
may not always be true [76].
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3.2.4. The K-harmonic means algorithm
Recently, Zhang and colleagues [111,112] proposed a novel algorithm called K-harmonic means

(KHM), with promising results. In KHM, the harmonic mean of the distance of each cluster center to
every pattern is computed. The cluster centroids are then updated accordingly. The objective function
that the KHM optimizes is

JKHM =
Np∑
p=1

K
K∑

k=1

1
‖zp−mk‖α

(15)

whereα is a user-specified parameter, typicallyα � 2.
The membership and weight functions for KHM are [47]

u(mk|zp) =
‖zp − mk‖−α−2

K∑
k=1

‖zp − mk‖−α−2

(16)

w(zp) =

K∑
k=1

‖zp − mk‖−α−2

(
K∑

k=1

‖zp − mk‖−α

)2 (17)

Hence, KHM has a soft membership function and a varying weight function. KHM assigns higher
weights for patterns that are far from all the centroids to help the centroids in covering the data [47].

Contrary to K-means, KHM is less sensitive to initial conditions and does not have the problem of
collapsing Gaussians exhibited by EM [3]. Experiments conducted by Zhang et al. [112], Zhang [111]
and Hamerly and Elkan [47] showed that KHM outperformed K-means, FCM (according to Hamerly
and Elkan [47]) and EM.

3.2.5. Hybrid 2
Hamerly and Elkan [47] proposed a variation of KHM, called Hybrid 2 (H2), which uses the soft

membership function of KHM (i.e. Eq. (16)) and the constant weight function of K-means (i.e. Eq. (8)).
Hamerly and Elkan [2002] showed that H2 outperformed K-means, FCM and EM. However, KHM, in
general, performed slightly better than H2.

K-means, FCM, EM, KHM and H2 are linear time algorithms (i.e. their time complexity is O(Np))
making them suitable for very large data sets. According to Hamerly [46], FCM, KHM and H2 – all use
soft membership functions – are the best available clustering algorithms.

3.3. Non-iterative partitional algorithms

Another category of unsupervised partitional algorithms includes the non-iterative algorithms. The
most widely used non-iterative algorithm is MacQueen’s K-means algorithm [70]. This algorithm works
in two phases: the first phase finds the centroids of the clusters, and the second clusters the patterns.
Competitive Learning (CL) updates the centroids sequentially by moving the closest centroid toward the
pattern being classified [94]. These algorithms suffer the drawback of being dependent on the order in
which the data points are presented. To overcome this problem, data points are presented in a random
order [25]. In general, iterative algorithms are more effective than non-iterative algorithms, since they
are less dependent on the order in which data points are presented.
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3.4. Other clustering techniques

Another type of clustering algorithms includes theNearest Neighbor clustering algorithm proposed
by Lu and Fu [68]. For each unclassified pattern, the algorithm finds the nearest classified pattern whose
distance from the unclassified pattern is less than a pre-specified threshold. The unclassified pattern is
then assigned to the cluster of the classified pattern. This process is repeated until all the patterns become
classified or no further assignments can occur [52].

Recently, a new type of clustering algorithms calledspectral clustering algorithms [7,76] has been
proposed by computer vision researchers and graph theorists. Spectral clustering is based on spectral
graph theory [20] where a graph representing the data (the graph is analogous to a matrix of the distance
between the patterns in the data set) is searched by the spectral clustering algorithm for globally optimal
cuts [46]. One major advantage of spectral clustering is that it can generate arbitrary-shaped clusters.
However, spectral clustering suffers from two major drawbacks [46]:

– It is computationally expensive (its time complexity isO(N 3
p +NdN

2
p )). Hence, they are not suitable

for moderately large data sets.
– It requires the user to specify a kernel width parameter which has a profound effect on the result of

the spectral clustering algorithm. Choosing a good value for this parameter is usually difficult.

The mean shift algorithm [23] also automatically finds the number of clusters in a data set and can
work with arbitrary shaped clusters. The mean shift algorithm starts with a number of kernel estimators
in the input space. These estimators are then repeatedly moved towards areas of higher density. When
all the kernels reached stability, all the kernels that are near to each other are grouped together. The data
is then segmented based on where each kernel started.

The mean shift algorithm has the following problems [46]:

– it has to find a way to group kernels and patterns, and
– as in spectral clustering, the mean shift algorithm requires the user to specify a kernel width parameter

which has a profound effect on the result of the algorithm.

4. Clustering validation indices

Thecluster validation problem is defined as the problem of determining the number of clusters in a
data set [63]. The main objective of cluster validation is to evaluate clustering results in order to find the
best partitiong of a data set [42]. Hence, cluster validity approaches are used to quantitatively evaluate
the result of a clustering algorithm [42]. These approaches have representative indices, calledvalidity
indices. The traditional approach to determine the “optimum” number of clusters is to run the algorithm
repetitively using different input values and to select the partitioning of data resulting in the best validity
measure [43].

Two criteria that have been widely considered sufficient in measuring the quality of data partitioning,
are [42]

– Compactness: patterns in one cluster should be similar to each other and different from patterns in
other clusters. The variance of patterns in a cluster gives an indication of compactness.

– Separation: clusters should be well-separated from each other. The Euclidean distance between
cluster centroids gives an indication of cluster separation.
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There are several validity indices; a thorough survey of validity indices can be found in Halkidi et
al. [42]. In the following, some representative indices are discussed.

Dunn [29] proposed a well known cluster validity index that identifies compact and well separated
clusters. The main goal of Dunn’s index is to maximize inter-cluster distances (i.e. separation) while
minimizing intra-cluster distances (i.e. increase compactness). The Dunn index is defined as

D = min
k=1,...,K


 min

kk=k+1,...,K


 dist(Ck, Ckk)

max
a=1,...,K

diam(Ca)




 (18)

wheredist(Ck, Ckk) is the dissimilarity function between two clustersCk andCkk defined as

dist(Ck, Ckk) = min
u∈Ck,w∈Ckk

d(u,w),

whered(u,w) is the Euclidean distance betweenu andv; diam(C) is the diameter of a cluster, defined
as

diam(C) = max
u,w∈C

d(u,w)

An “optimal” value ofK is the one that maximizes the Dunn’s index. Dunn’s index suffers from the
following problems [42]:

– it is computationally expensive, and
– it is sensitive to the presence of noise.

Several Dunn-like indices were proposed in Pal and Biswas [85] to reduce the sensitivity to the presence
of noise.

Another well known index, proposed by Davies and Bouldin [26], minimizes the average similarity
between each cluster and the one most similar to it. The Davies and Bouldin index is defined as

DB =
1
K

K∑
k=1

max
kk = 1, . . . ,K
k �= kk

(
diam(Ck) + diam(Ckk)

dist(Ck, Ckk)

)
(19)

An “optimal” value ofK is the one that minimizes theDB index.
Recently, Turi [100] proposed an index incorporating a multiplier function (to penalize the selection

of a small number of clusters) to the ratio between intra-cluster and inter-cluster distances, with some
promising results. The index is defined as

V = (c×N(2, 1) + 1) × intra

inter
(20)

wherec is a user specified parameter andN(2, 1) is a Gaussian distribution with mean 2 and standard
deviation of 1. The “intra” term is the average of all the distances between each data point and its cluster
centroid, defined as

intra =
1
Np

K∑
k=1

∑
∀u∈Ck

‖u− mk‖2
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This term is used to measure the compactness of the clusters. The “inter” term is the minimum distance
between the cluster centroids, defined as

inter = min { ‖mk −mkk‖2 },∀k = 1, . . . ,K − 1andkk = k + 1, . . . ,K.

This term is used to measure the separation of the clusters. An “optimal” value ofK is the one that
minimizes theV index.

According to Turi [100], this index performed better than both Dunn’s index and the index of Davies
and Bouldin on the tested cases.

Two recent validity indices areS Dbw [43] andCDbw [44]. S Dbw measures the compactness of a
data set by the cluster variance, whereas separation is measured by the density between clusters. The
S Dbw index is defined as

S Dbw = scat(K) + Dens bw(K) (21)

The first term is the average scattering of the clusters which is a measure of compactness of the clusters,
defined as

scat(K) =
1
K

K∑
k=1

‖σ(Ck)‖/‖σ(Z)‖

whereσ(Ck)is the variance of clusterCk andσ(Z) is the variance of data setZ; ||z|| is defined as
||z|| = (zT z)1/2, wherez is a vector.

The second term in Eq. (21) evaluates the density of the area between the two clusters in relation to the
density of the two clusters. Thus, the second term is a measure of the separation of the clusters, defined
as

Dens bw(K) =
1

K(K − 1)

K∑
k=1




K∑
kk = 1
k �= kk

density(bk,kk)
max {density(Ck), density(Ckk)}




wherebk,kk is the middle point of the line segment defined bymk andmkk. The termdensity(b) is
defined as

density(b) =
nk,kk∑
ll=1

f(zll, b)

wherenk,kk is the total number of patterns in clustersCk andCkk (i.e.nk,kk = nk +nkk). The function
f(z, b) is defined as

f(z, b) =
{

0 if d(z, b) > σ
1 otherwise

where

σ =
1
K

√√√√ K∑
k=1

‖σ(Ck)‖
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An “optimal” value ofK is the one that minimizes theS Dbw index. Halkidi and Vazirgiannis [43]
showed that, in tested cases,S Dbw successfully found the “optimal” number of clusters whereas other
well-known indices often failed to do so. However,S Dbw does not work properly for arbitrary shaped
clusters.

To address this problem, Halkidi and Vazirgiannis [44] proposed a multi-representative validity index,
CDbw, in which each cluster is represented by a user-specified number of points, instead of one repre-
sentative as is done inS Dbw. Furthermore,CDbw uses intra-cluster density to measure the compactness
of a data set, and uses the density between clusters to measure their separation.

More recently, Veenman et al. [103,104] proposed a validity index that minimizes the intra-cluster
variability while constraining the intra-cluster variability of the union of the two clusters. The sum of
squared error is used to minimize the intra-cluster variability while a minimum variance for the union of
two clusters is used to implement the joint intra-cluster variability. The index is defined as

IV = min
K∑

k=1

nkV ar(Ck) (22)

wherenk is the number of patterns in clusterCk and

V ar(Ck) =
1
nk

∑
zp∈Ck

‖zp − mk‖2

such that

V ar(Ck ∪ Ckk) � σ2
max,∀Ck,Ckk, k �= kk

whereσ2
max is a user-specified parameter. This parameter has a profound effect on the final result.

The above validity indices are suitable for hard clustering. Validity indices have been developed for
fuzzy clustering. The interested reader is referred to Halkidi et al. [42] for more information.

These are also several information-theoretic criteria to determine the number of clusters in a data set
such as Akaike’s information criterion (AIC) [2], minimum description length (MDL) [91], Merhav-
Gutman-Ziv (MGZ) [74]. These criteria are based on likelihood and they differ in the penalty term they
use to penalize large number of clusters. According to Langan et al. [63], MGZ requires the user to
specifya priori value for a parameter that has a profound effect on the resultant number of clusters.
Furthermore, the penalty terms of AIC and MDL are generally useless due to the fact that the associated
log likelihood function generally dominates the penalty terms in both AIC and MDL. To address this
issue, Langan et al. [63] proposed a cluster validation criterion that has no penalty term and applied it to
the image segmentation problem with promising results.

5. Determining the number of clusters

Most clustering algorithms require the number of clusters to be specified in advance [46,64]. Finding
the “optimum” number of clusters in a data set is usually a challenge since it requiresa priori knowledge,
and/or ground truth about the data, which is not always available. The problem of finding the optimum
number of clusters in a data set has been the subject of several research efforts [42,98], however, despite
the amount of research in this area, the outcome is still unsatisfactory [93]. In the literature, many
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approaches to dynamically find the number of clusters in a data set were proposed. In this section,
several dynamic clustering approaches are presented and discussed.

ISODATA (Iterative Self-Organizing Data Analysis Technique), proposed by Ball and Hall [10], is an
enhancement of the K-means algorithm (K-means is sometimes referred to asbasic ISODATA [100]).
ISODATA is an iterative procedure that assigns each pattern to its closest centroids (as in K-means).
However, ISODATA has the ability to merge two clusters if the distance between their centroids is below
a user-specified threshold. Furthermore, ISODATA can split elongated clusters into two clusters based
on another user-specified threshold. Hence, a major advantage of ISODATA compared to K-means is
the ability to determine the number of clusters in a data set. However, ISODATA requires the user to
specify the values of several parameters (e.g. the merging and splitting thresholds). These parameters
have a profound effect on the performance of ISODATA making the result subjective [100].

Dynamic Optimal Cluster-seek (DYNOC) [99] is a dynamic clustering algorithm which is similar to
ISODATA. DYNOC maximizes the ratio of the minimum inter-cluster distance to the maximum intra-
cluster distance. This is done by an iterative procedure with the added capability of splitting and merging.
However, as in ISODATA, DYNOC requires the user to specify a value for a parameter that determines
whether splitting is needed [100].

Snob [105,107] uses various methods to assign objects to clusters in an intelligent manner [100]. After
each assignment, a means of model selection called the Wallace Information Measure (also known as the
Minimum Message Length (MML)) [78,106] is calculated and based on this calculation the assignment
is accepted or rejected. Snob can split/merge and move points between clusters, thereby allowing it to
determine the number of clusters in a data set.

Oliver et al. [77] compares MML with different model selection methods for determining the number
of clusters,K, in a data set. All the compared methods use a two step procedure where the EM algorithm
is first used to estimate the parameters of each cluster for a range ofK values. Then, the value ofK
that optimizes a tested model selection criterion (e.g. MML) is chosen. According to Oliver et al. [77],
MML performs better than the other examined model selection criteria when applied to the tested data
sets. However, model selection methods based on the EM algorithm depend on the initial conditions and
suffer from the local maximum of log-likelihood [24].

Bischof et al. [14] proposed an algorithm based on K-means which uses MDL (conceptually similar
to MML). The algorithm starts with a large value forK and proceeds to remove centroids when this
removal results in a reduction of the description length. K-means is used between the steps that reduce
K.

Roberts et al. [92] proposed a Bayesian-based approach to determine the number of clusters in a data set.
The proposed approach was compared against other optimal model selection methods (including MML
and MDL) on synthetic and real data sets. According to Roberts et al. [92], the Bayesian methods, MDL
and MML outperformed other heuristic techniques (e.g. the method proposed by Gath and Geva [38] –
discussed later in this section).

Recently, Figueiredo and Jain [33] proposed an approach that integrates estimation and model selection
in one algorithm. According to Figueiredo and Jain [33], the proposed approach can determine the number
of clusters in a data set and compared to the EM algorithm, it is less sensitive to initialization. Dai and
Ma [24] proposed a Bayesian-based approach to automatically determine the number of clusters in a
data set with promising results. Furthermore, Zivkovic and van der Heijden [113] proposed a recursive
method that estimates the parameters of the mixture and determines the number of clusters in the data
set. However, the proposed approach requires the user to specify the value of a parameter, which has a
profound effect on the resultant number of clusters.
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Modified Linde-Buzo-Gray (MLBG), proposed by Rosenberger and Chehdi [93], improves K-means
by automatically finding the number of clusters in data set by using intermediate results. MLBG is an
iterative procedure that starts withK clusters. In each iteration, a cluster,C k, maximizing an intra-cluster
distance measure is chosen for splitting. Two centroids are generated from the splitting process. The
first centroid,m1, is initialized to the centroid of the original cluster,Ck. The second cluster centroid,
m2, is chosen to be the pattern inCk which is the most distant fromm1. K-means is then applied on the
newK + 1 centroids. The new set of centroids is accepted if it satisfies an evaluation criterion based on
a dispersion measure. This process is repeated until no valid partition of the data can be obtained. One
of the main problems with MLBG is that it requires the user to specify the values of four parameters,
which have a profound effect on the resultant number of clusters.

Pelleg and Moore [88] proposed another K-means based algorithm, called X-means that uses model
selection. X-means starts by setting the number of clusters,K, to be the minimum number of clusters
in the data set (e.g.K = 1). Then, K-means is applied on theK clusters. This is followed by a splitting
process based on the Bayesian Information Criterion (BIC) [55] defined as

BIC(C|Z) = l̂(Z|C) − K(Nd + 1)
2

logNp (23)

where l̂(Z|C) is the log-likelihood of the data setZ according to modelC. If the splitting process
improves the BIC score the resulting split is accepted, otherwise it is rejected. Other scoring functions
can also be used.

These two steps are repeated until a user-specified upper bound ofK is reached. X-means searches
over the range of values ofK and reports the value with the best BIC score.

Recently, Huang [49] proposed SYNERACT as an alternative approach to ISODATA. SYNERACT
combines K-means with hierarchical descending approaches to overcome the drawbacks of K-means
mentioned previously. Three concepts used by SYNERACT are:

– a hyperplane to split up a cluster into two smaller clusters and compute their centroids,
– iterative clustering to assign pixels into available clusters, and
– a binary tree to store clusters generated from the splitting process.

According to Huang [49], SYNERACT is faster than and almost as accurate as ISODATA. Furthermore,
it does not require the number of clusters and initial location of centroids to be specified in advance.
However, SYNERACT requires the user to specify the values of two parameters that affect the splitting
process.

Veenman et al. [103] proposed a partitional clustering algorithm that finds the number of clusters
in a data set by minimizing the clustering validity index defined in Eq. (22). This algorithm starts by
initializing the number of clusters equal to the number of patterns in the data set. Then, iteratively,
the clusters are split or merged according to a series of tests based on the validity index. According to
Veenman et al. [103], the proposed approach performed better than both K-means and EM algorithms.
However, the approach suffers from the following drawbacks, namely

– it is computationally expensive, and
– it requires the user to specify a parameter for the validity index (already discussed in Section 4)

which has a significant effect on the final results (although the authors provide a method to help the
user in finding a good value for this parameter).
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More recently, Hamerly and Elkan [48] proposed another approach based on K-means, called G-means.
G-means starts with a small value forK, and with each iteration splits up the clusters whose data do
not fit a Gaussian distribution. Between each round of splitting, K-means is applied to the entire data
set in order to refine the current solution. According to Hamerly and Elkan [48], G-means works better
than X-means, however, it works only for data having spherical and/or elliptical clusters. G-means is
not designed to work for arbitrary-shaped clusters [46].

Gath and Geva [38] proposed an unsupervised fuzzy clustering algorithm based on a combination
of FCM and fuzzy maximum likelihood estimation. The algorithm starts by initializingK to a user-
specified lower bound of the number of clusters in the data set (e.g.K = 1). A modified FCM (that uses
an unsupervised learning process to initialize theK centroids) is first applied to cluster the data. Using
the resulting centroids, a fuzzy maximum likelihood estimation algorithm is then applied. The fuzzy
maximum likelihood estimation algorithm uses an “exponential” distance measure based on maximum
likelihood estimation [13] instead of the Euclidean distance measure, because the exponential distance
measure is more suitable for hyper-ellipsoidal clusters. The quality of the resulting clusters is then
evaluated using a clustering validity index that is mainly based on a hyper-volume criterion which
measures the compactness of a cluster.K is then incremented and the algorithm is repeated until a
user-specified upper bound ofK is reached. The value ofK resulting in the best value of the validity
index is considered to be the “optimal” number of clusters in the data set. Gath and Geva [38] stated that
their algorithm works well in cases of large variability of cluster shapes. However, the algorithm becomes
more sensitive to local optima as the complexity increases. Furthermore, because of the exponential
function, floating point overflows may occur [97].

Lorette et al. [67] proposed an algorithm based on fuzzy clustering to dynamically determine the
number of clusters in a data set. A new objective function was proposed for this purpose, defined as

JUFC =
K∑

k=1

Np∑
p=1

uq
k,pd

2(zp,mk) − β

K∑
k=1

pklog(pk) (24)

whereq is the fuzziness exponent,uk,p is the membership value for thepth pattern in thekth cluster,β is
a parameter that decreases as the run progresses, andpk is thea priori probability of clusterCk defined
as

pk =
1
Np

Np∑
p=1

uk,p (25)

The first term of Eq. (24) is the objective function of FCM which is minimized when each cluster consists
of one pattern. The second term is an entropy term that is minimized when all the patterns are assigned
to one cluster. Lorette et al. [67] use this objective function to derive new update equations for the
membership and centroid parameters.

The algorithm starts with a large number of clusters. Then, the membership values and centroids are
updated using the new update equations. This is followed by applying Eq. (25) to update thea priori
probabilities. Ifpk < ε then clusterk is discarded;ε is a user-specified parameter. This procedure
is repeated until convergence. The drawback of this approach is that it requires the parameterε to be
specified in advance. The performance of the algorithm is sensitive to the value ofε.

Similarly, Boujemaa [16] proposed an algorithm, based on a generalization of the competitive agglom-
eration clustering algorithm introduced by Frigui and Krishnapuram [35].
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Let )(tη  be the learning rate parameter and )(tw∆ be the neighborhood function  

Randomly initialize the weight vectors, wk(0) 

Initialize the learning rate (0)η  and the neighborhood function (0)w∆  

Repeat 
   For each input pattern zp do 

      Select the node whose weight vector is closest (in terms of Euclidean distance) to   
      zp as the winning node 

 

      Use competitive learning to train the weight vectors such that all the nodes within 

      the neighborhood of the winning node are moved toward zp: 
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   Endloop 
   Linearly decrease )(tη and reduce )(tw∆  

Until some convergence criteria are satisfied 

{

Fig. 1. General pseudo-code for SOM.

The fuzzy algorithms discussed above modify the objective function of FCM. In general, these
approaches are sensitive to initialization and other parameters [36]. Frigui and Krishnapuram [36]
proposed a robust competitive clustering algorithm based on the process of competitive agglomeration.
The algorithm starts with a large number of small clusters. Then, during the execution of the algorithm,
adjacent clusters compete for patterns. Clusters losing the competition will eventually disappear [36].
However, this algorithm also requires the user to specify a parameter that has a significant effect on the
generated result.

6. Clustering using Self-Organizing Maps

Kohonen’s Self Organizing Maps (SOM) [59] can be used to automatically find the number of clusters in
a data set. The objective of SOM is to find regularities in a data set without any external supervision [86].
SOM is a single-layered unsupervised artificial neural network where input patterns are associated with
output nodes via weights that are iteratively modified until a stopping criterion is met [52]. SOM combines
competitive learning (in which different nodes in the Kohonen network compete to be the winner when an
input pattern is presented) with a topological structuring of nodes, such that adjacent nodes tend to have
similar weight vectors (this is done via lateral feedback) [73,86]. A general pseudo-code of SOM [86]
is shown in Fig. 1.

In Fig. 1, η(t) starts relatively large (e.g. close to 1) then linearly decreases until it reaches a small
user-specified value. The neighborhood function∆w(t) defines the neighborhood size surrounding the
winning node. A large value of∆w(t) is used at the beginning of the training. This value is then reduced
as the training progresses in order to get sharper clusters [86]. A typical neighborhood arrangement is
the rectangular lattice shown in Fig. 2 [86].

SOM suffers from the following drawbacks [52]:

– It depends on the initial conditions.
– Its performance is affected by the learning rate parameter and the neighborhood function.
– It works well with hyper-spherical clusters only.
– It uses a fixed number of output nodes.
– It depends on the order in which the data points are presented. To overcome this problem, the choice

of data points can be randomized during each iteration [86].
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Fig. 2. Rectangular Lattice arrangement of neighborhoods.

An initial partition P0 of the data set is randomly chosen  

Repeat 
   A neighbor of P0 is chosen  

   If the new partition is better than P0 then  

      move to the new partition  

   else 
      move to the new partition with a probability that decreases as the algorithm  

      progresses. 

Until a stopping criterion is satisfied 

Fig. 3. General simulated annealing based clustering algorithm.

7. Clustering using stochastic algorithms

Simulated annealing [102] has been used for clustering [58]. In general, a simulated annealing based
clustering algorithm works as shown in Fig. 3 [52].

One problem with simulated annealing is that it is very slow in finding an optimal solution [52].
Tabu search [39,40] has also been used for hard clustering [4] and fuzzy clustering [27] with en-

couraging results. A hybrid approach combining both K-means and tabu search that performs better
than both K-means and tabu search was proposed by Frnti et al. [37]. Recently, Chu and Roddick [19]
proposed a hybrid approach combining both tabu search and simulated annealing that outperforms the
hybrid proposed by Frnti et al. [37]. However, the performance of simulated annealing and tabu search
depends on the selection of several control parameters [52].

Most clustering approaches discussed so far perform local search to find a solution to a clustering prob-
lem. Evolutionary algorithms [75] which perform global search have also been used for clustering [52].
Raghavan and Birchand [89] used GAs [41] to minimize the squared error of a clustering solution. In
this approach, each chromosome represents a partition ofNp patterns intoK clusters. Hence, the size of
each chromosome isNp. This representation has a major drawback in that it increases the search space
by a factor ofK!. The crossover operator may also result in inferior offspring [52].

Babu and Murty [6] proposed a hybrid approach combining K-means and GAs that performed better
than the GA. In this approach, a GA is only used to feed K-means with good initial centroids [52].

Recently, Maulik and Bandyopadhyay [71] proposed a GA-based clustering where each chromosome
representsK centroids. Hence, a floating point representation is used. The fitness function is defined as
the inverse of the objective function of K-means (refer to Eq. (6)). The GA-based clustering algorithm
is summarized in Fig. 4.
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1. Initialize each chromosome to contain K randomly chosen centroids from the 

data set 

2. For t = 1 to tmax 

(a) For each chromosome i 
(i) Assign each pattern to the cluster with the closest centroid 

(ii)  Recalculate the K cluster centroids of chromosome i as the means of their 

patterns 

(iii) Calculate the fitness of chromosome i 
 

(b) Apply roulette wheel selection 

(c) Apply single point crossover with probability pc 

(d) Apply mutation with probability pm. The mutation operator is defined as 

xxx )( γ++= r  

            where (0,1)~ Ur and γ  is a user-specified parameter such that γ ∈ (0,1) 

Fig. 4. General pseudo-code for GA-based clustering algorithm.

According to Maulik and Bandyopadhyay [71], this approach outperformed K-means on the tested
cases. One drawback of this approach is that it requires the user to specify the number of clusters in
advance.

Lee and Antonsson [64] used an evolution strategy (ES) [8] to dynamically cluster a data set. The
proposed ES implemented variable length individuals to search for both the centroids and the number of
clusters. Each individual represents a set of centroids. The length of each individual is randomly chosen
from a user-specified range of cluster numbers. The centroids of each individual are then randomly
initialized. Mutation is applied to the individuals by adding/subtracting a Gaussian random variable with
zero mean and unit standard deviation. Two point crossover is also used as a “length changing operator”.
A (10+60) ES selection is used where 10 is the number of parents and 60 is the number of offspring
generated in each generation. The best ten individuals from the set of parents and offspring are used for
the next generation. A modification of the mean square error is used as the fitness function, defined as

JES =
√
K + 1

K∑
k=1

∑
∀zp∈Ck

d(zp,mk) (26)

The modification occurs by multiplying the mean square error by a constant corresponding to the square
root of the number of clusters. This constant is used to penalize a large value ofK. According to Lee
and Antonsson [64], the results are promising. However, the proposed algorithm needs to be compared
with other dynamic clustering approaches and its performance needs to be investigated as the dimension
increases.

In general, evolutionary approaches have several advantages, namely [52]:

– they are global search approaches,
– they are suitable for parallel processing, and
– they can work with a discontinuous criterion function.

However, evolutionary approaches generally suffer from the following drawbacks [52]:

– they require the user to specify the values of a set of parameters (e.g. population size,p c, pm, etc.)
for each specific problem, and

– the execution time of EAs is significantly higher than the execution time of other traditional clustering
algorithms (e.g. K-means and FCM), especially when applied to large data sets.
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More recently, Omran et al. [81,84] proposed a Particle Swarm Optimization (PSO) [57]-based clus-
tering algorithm where each particle representsK centroids. Hence, a floating point representation is
used. According to Omran et al. [81], this approach generally outperformed K-means, FCM, KHM, H2
and GA on the tested cases. The same algorithm of Omran et al. [81,84] was used by Van der Merwe
and Engelbrecht [74] to cluster general data sets. It was applied on a set of multi-dimensional data (e.g.
the Iris plant data base). In general, the results show that the PSO-based clustering algorithm performs
better than the K-means algorithm, which verify the results of Omran et al. [81,84].

One drawback of the above PSO-based approaches is that they require the user to specify the number
of clusters in advance. To address this drawback, a dynamic clustering approach based on PSO, was
proposed by Omran [79]. The proposed approach automatically determines the “optimum” number of
clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by
partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions.
Using binary PSO the “best” number of clusters is selected. The centroids of the chosen clusters are then
refined via the K-means clustering algorithm. The experiments conducted by Omran [79] show that the
proposed approach generally found the “optimum” number of clusters on the tested cases.

Xiao et al. [110] proposed a hybrid approach to solve gene clustering problems. The proposed approach
uses PSO and SOM such that SOM groups the data set and PSO optimizes the SOM’s weights. The
results show that the hybrid approach provides clusters with greater compactness.

Cohen and de Castro [21] proposed a PSO-based approach where each particle represents a prototype
for a cluster. Thus, the particle represents only one part of the solution. In addition, the proposed
approach does not use a fitness function. The particles are moved into regions in the search space
representing natural clusters.

Recently, Differential Evolution [96] was applied to the clustering problem by Paterlini and Krink [87]
and Omran et al. [80] with promising results. A new variant of DE was proposed by Omran et al. [83]
where the control parameters are self-adaptive (i.e. the user does not need to specify the DE’s control
parametersa priori). The new variant was calledSelf-adaptive Differential Evolution (SDE). The
experiments conducted show that SDE generally outperform other DE algorithms in all the benchmark
functions. An SDE-based clustering algorithm was proposed by Omran and Engelbrecht [82] with
encouraging results.

Clustering approaches inspired by the collective behaviors of ants have been proposed by [62,69,108].
The main idea of these approaches is that artificial ants are used to pick up items and drop them near
similar items resulting in the formation of clusters.

Biclustering [18,45] is a way to cluster rows and columns of a matrix at the same time. The objective
was to find minimum variance biclusters. Divina and Aguilar-Ruiz [28] proposed an evolutionary-based
approach to search for biclusters with promising results.

8. Summary

Clustering is the process of finding natural groups within a data set such that patterns within a group
are more similar to each other than patterns belonging to different groups. Clustering has been used in
a wide range of scientific and engineering disciplines. Clustering is a difficult problem with complex
mathematical modeling. In this paper, different clustering approaches were presented and discussed.
These approaches differ considerably in terms of efficiency, cost, solution quality, etc. Each approach has
its strengths, weaknesses and limitations. If speed is our main concern then FCM and KHM seem to be
reasonable choices. However, if the quality of the solution is our main objective then population-based
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stochastic approaches represent viable options because they can, in general, avoid being trapped in local
optima.
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